Health / Medical Topics

    Ubiquitin-Proteasomal Pathway

    The motor defects of Parkinson's disease are related to the loss of dopaminergic neurons in specific brain regions. Examination of these neurons in diseased tissue has revealed the presence of Lewy bodies, dense aggregates that include the protein alpha-synuclein. A genetic basis for most cases of Parkinson's disease has not yet been identified, but mutations in alpha-synuclein have been associated with at least one rare form of the disease, and mutations in another protein, the parkin gene, are associated with another inherited form of Parkinson's disease. Parkin is found in Lewy bodies along with alpha-synuclein and the parkin protein is an E3 ubiquitin ligase. Parkin appears to work in conjunction with ubiquitin activating (Uba)1, an E1 protein and the ubiquitin-conjugating (Ubc) enzymes UbcH7 and 8. The E1 delivers ubiquitin to the E2 in a cycle that creates an increasing chain of ubiquitin. The Parkin E3 ligates this onto substrates and so tags these proteins in normal cells, targeting them for destruction in the proteasome. One of the proteins that parkin normally targets for destruction is a specific O-glycosylated form of alpha-synuclein. Failure of parkin-mediated degradation of alpha-synuclein may be a key factor leading to the death of dopaminergic neurons. Another substrate of parkin is a GPCR-like protein called Pael-R that accumulates in the ER of affected cells and may cause neuronal cell death. The involvement of Parkin and alpha-synuclein mutations in genetic forms of Parkinson's suggests that failure of ubiquitination and protein degradation may be causative in other forms of Parkinson's. Questions remaining include the cause of the lack of effective ubiquitination in individuals lacking obvious genetic defects in this pathway and how to use this knowledge of ubiquitination and protein degradation in Parkinson's disease to identify therapeutic strategies. (NCI Thesaurus/BIOCARTA)




    YOU MAY ALSO LIKE

    Protein ubiquitination plays an important role in eukaryotic cellular processes. It mainly functions as a signal for 26S proteasome dependent protein…
    Ubiquitin-like protein ISG15 (165 aa, ~18 kDa) is encoded by the human ISG15 gene. This protein is involved in type I interferon-mediated…
    Ubiquitin-conjugating enzyme E2 R1 (236 aa, ~27 kDa) is encoded by the human CDC34 gene. This protein plays a role in the…
    Ubiquitin-conjugating enzyme E2 L3 (154 aa, ~18 kDa) is encoded by the human UBE2L3 gene. This protein plays a role in E2…
    Ubiquitin-conjugating enzyme E2 D2 (147 aa, ~17 kDa) is encoded by the human UBE2D2 gene. This protein is involved in the covalent…
    Ubiquitin-conjugating enzyme E2 C (179 aa, ~20 kDa) is encoded by the human UBE2C gene. This protein is involved in mitotic progression…

    © 1991-2023 The Titi Tudorancea Bulletin | Titi Tudorancea® is a Registered Trademark | Terms of use and privacy policy
    Contact